Gambar8. Pembiasan cahaya Sumber: IPA untuk SD dan MI Kelas V. Apakah cahaya benar-benar merambat lurus atau berbelok-belok? Bagaimana membuktikan bahwa cahaya dapat dipantulkan dan dapat diuraikan? Cahaya yang jatuh atau mengenai cermin datar akan dipantulkan kembali dan memenuhi hukum pemantulan. Bila sebuah benda diletakkan di depatï»żCahaya yang menimbulkan pembiasan. - Kids, apakah kamu tahu peristiwa pembiasan cahaya? Refraksi atau pembiasan cahaya didefinisikan sebagai perubahan arah rambat partikel cahaya akibat terjadinya suatu percepatan. Peristiwa ini terjadi pada optika era optik geometris dengan refraksi cahaya yang dijabarkan dengan hukum snellius. Baca Juga Proses Bagaimana Terbentuknya Sebuah Bayangan dan Sifat-Sifat yang Dimunculkannya, Sudah Tahu? Hukum snellius sendiri adalah proses terjadinya bayangan secara bersamaan dengan refleksi gelombang pada cahaya. Tumbukan antara gelombang cahaya menyebabkan kecepatan fase gelombang cahaya akan berubah seketika. Lalu, apa saja contoh peristiwa pembiasan cahaya? Penasaran, kan? Yuk, simak ulasannya! Contoh Peristiwa Pembiasan Cahaya dalam Kehidupan Sehari-Hari 1. Berlian yang Tampak Berkilau Pixabay Berlian yang mengkilap adalahsalah satu contoh pembiasan cahaya. Cahaya yang menyinari berlian akan mengalami serangkaian proses pembiasan oleh permukaan permukaan berlian tersebut. Hal ini disebabkan indeks bias intan yang cukup besar dan sudut kritis berlian yang kecil sehingga menyebabkan mereka akan tampak berkilau. Baca Juga Daftar 5 Negara Tertinggi di Dunia, Salah Satunya Jadi Sumber Berlian 2. Sedotan yang Tampak Bengkok dalam Gelas Berisi Air Pixabay Sedotan yang bengkok dalam gelas berair adalah salah satu contoh pembiasan cahaya. Sedotan yang bagiannya masuk di dalam gelas berisi air akan terlihat bengkok jika dilihat dari luar. Hal ini terjadi karena cahaya yang datang dari udara kurang rapat berjalan menuju air lebih rapat akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini pun terjadi di dalam gelas tersebut. Hal ini yang mengakitbatkan sedotan dalam gelas berair akan tampak bengkok karena enggak berada di titik sebenarnya garis normal. 3. Dasar Kolam yang Tampak Dangkal Pixabay Kolam renang yang terlihat dangkal adalah salah satu contoh pembiasan cahaya. Dasar kolam akan tampak seolah dangkal jika dilihat dari permukaan daratan, Kids. Hal ini disebabkan karena cahaya yang datang dari udara kurang rapat menuju air lebih rapat dan akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini akan berlangsung di dalam kolam renang tersebut. Baca Juga Unik dan Langka! Berjarak 800 Tahun Cahaya dari Bumi, Ilmuwan Temukan Dua Planet Raksasa Menari Bersama Hal ini menyebabkan seolah dasar kolam akan terlihat dangkal karena terjadi pembiasan akibat bayangan dasar kolam bukan bentuk yang sesungguhnya. Nah, itu dia, Kids, contoh peristiwa pembiasan cahaya dalam kehidupan sehari-hari. Semoga bermanfaat! - Teman-teman, kalau ingin tahu lebih banyak tentang sains, dongeng fantasi, cerita misteri, dan pengetahuan seru, langsung saja berlangganan majalah Bobo dan Mombi SD. Tinggal klik di Artikel ini merupakan bagian dari Parapuan Parapuan adalah ruang aktualisasi diri perempuan untuk mencapai mimpinya. PROMOTED CONTENT Video Pilihan CARI11 ALAT PANTULAN DAN PEMBIASAN CAHAYA OLEH CIKGU ROSNIZA - Pantulan Cahaya atau Pembiasan Cahaya (Tahun 4) Komuniti Bezakan manakah pantulan dan penyerapan daripada kesan rumah hijau Gambar rajah berlabel. oleh G30001755. Wordwall mempercepat dan memudahkan penciptaan sumber pengajaran yang sempurna. Pilih satu templat; - Seberkas sinar yang melalui dua medium yang berbeda kerapatannya akan dibiaskan menurut hukum pembiasan Snellius. Dilansir dari Buku Siap Menghadapi Ujian Nasional SMP/MTs 2011 2010 oleh Wahono dan teman-teman, bunyi hukum pembiasan Snellius sebagai berikut Sinar datang, sinar bias, dan garis normal terletak pada satu bidang datar Perbandingan sinar sudut datang dengan sinus sudut bias dari suatu cahaya yang melewati dua medium yang berbeda merupakan suatu konstanta Baca juga Pembiasan Cahaya pada Prisma Sinar datang dari medium renggang ke lebih rapat dibiaskan mendekati garis normal, dan sinar datang dari medium rapat ke renggang dibiaskan menjauhi garis normal. pembiasan cahaya menjauhi garis normal Baca juga Pembiasan Cahaya Pengertian, Sifat, dan HukumnyaIndeks bias Indeks bias mutlak adalah perbandingan kecepatan cahaya di ruang hampa dengan kecepatan cahaya di medium tersebut. dengan = indeks bias mutlak mediumc = cepat rambat cahaya di ruang hampav = cepat rambat cahaya di suatu medium Indeks bias relatif adalah perbandingan indeks bias suatu medium terhadap indeks bias medium yang lain. dengan
Pembiasancahaya merupakan peristiwa perubahan arah rambat cahaya ketika berpindah dari satu medium ke medium lain yang kerapatan optiknya berbeda. Penyebab terjadinya pembiasan cahaya dibagi menjadi 2 yaitu: Ketika sinar datang dari medium yang kurang rapat menuju medium yang lebih rapat maka sinar datang akan dibiaskan mendekati garis normal.
Pernahkah kalian menggunakan kaca pembesar, kamera, atau mikroskop? Jika pernah, berarti kalian pernah menggunakan lensa untuk membentuk bayangan. Lensa adalah benda bening yang membiaskan cahaya. Kebanyakan lensa terbuat dari kaca atau plastik dengan dua permukaan. Lensa mempunyai dua permukaan lengkung atau satu permukaan lengkung dan satu permukaan datar. Seperti halnya cermin lengkung, berdasarkan bentuknya, lensa dibedakan atas lensa cembung dan lensa cekung. Nah pada kesempatan kali ini kita akan belajar mengenai pembiasan cahaya pada lensa cembung. Tahukah kalian apa itu lensa cembung? Bagiamana proses pembentukan bayangan pada lensa cembung? Untuk menjawab pertanyaan tersebut, silahkan kalian simak penjelasan berikut ini. Pengertian Lensa Cembung Lensa cembung adalah lensa dengan bagian tengah lebih tebal daripada bagian tepi. Cahaya yang jatuh pada permukaan lensa cembung akan mengalami pembiasan. Berkas-berkas sinar datang akan dibiaskan sehingga berkas-berkas sinar biasnya mengumpul. Bagian lensa yang tebal akan menghambat cahaya lebih banyak daripada bagian lensa yang tipis. Oleh karena cepat rambat cahaya di dalam lensa lebih kecil daripada di udara, maka berkas-berkas sinar bias akan mengumpul. Itulah sebabnya lensa cembung bersifat konvergen. Dari gambar di atas, sinar-sinar cahaya yang datang sejajar sumbu utama lensa dibiaskan menuju titik fokus. Sinar-sinar tersebut mengumpul pada titik fokus, sehingga sinar-sinar itu bisa membentuk bayangan nyata yang dapat diproyeksikan pada layar. Besar pembiasan cahaya pada suatu lensa bergantung pada indeks bias bahan lensa dan kelengkungan permukaan lensa, sedangkan indeks bias bergantung pada cepat rambat cahaya dalam bahan lensa tersebut. Lensa cembung yang tebal akan membiaskan cahaya lebih besar daripada lensa cembung tipis. Ini berarti bahwa panjang fokus lensa cembung tebal lebih pendek daripada panjang fokus lensa cembung tipis. Pada lensa cembung, titik fokus tempat berpotongan sinar-sinar bias selalu berada di bagian belakang lensa cembung maka fokus lensa cembung adalah fokus sejati, sehingga jarak fokus lensa cembung selalu bertanda positif. Oleh karena itu, lensa cembung disebut juga lensa positif. Macam-Macam Lensa Cembung Lensa cembung dibedakan menjadi tiga macam, yaitu lensa dobel cembung/cembung ganda bikonveks, lensa cembung-datar plan-konveks, dan lensa cembung cekung konveks-konkaf. Untuk memahami ketiga jenis lensa tersebut, perhatikan gambar di bawah ini. Lensa Bikonveks merupakan lensa yang berbentuk cembung pada kedua permukaannya. Lensa Plan-konveks adalah lensa cembung yang dibatasi oleh satu bidang datar dan satu bidang cembung. Lensa Konveks-Konkaf merupakan lensa yang dibatasi oleh satu bidang cembung dan satu bidang cekung. Bagian-Bagian Lensa Cembung Sebelum kalian dapat memahami bagaimana proses pembentukan bayangan pada lensa cembung atau lensa konveks, kalian perlu mengetahui bagian-bagian penting pada lensa ini. Lensa cembung memiliki bagian-bagian seperti yang ditunjukkan pada gambar berikut ini. Keterangan P1 dan P2 = Titik pusat bidang lengkung lensa P1P2 = Sumbu utama lensa R1 dan R2 = Jari-jari kelengkungan permukaan lensa O = Pusat optik lensa OP1 dan OP2 = Jari-jari kelengkungan R F1 dan F2 = Titik api titik fokus lensa OF1 dan OF2 = Jarak fokus lensa f Pada gambar di atas, titik F disebut titik fokus. Berbeda dengan cermin cembung, titik fokus pada lensa cembung ada dua, yaitu fokus di depan lensa F2 dan fokus di belakang lensa F1. Titik fokus F1 disebut fokus utama atau fokus aktif. Sedangkan F2 disebut fokus pasif. Titik fokus aktif adalah titik fokus tempat sinar-sinar dibiaskan sedangkan titik fokus lainnya ditetapkan sebagai fokus pasif. Fokus aktif dan fokus pasif simetri terhadap lensa. Ketika kalian menghadapkan lensa cembung ke arah matahari, maka di belakang lensa di atas tanah akan tampak sebuah titik terang. Dengan menggeser lensa naik turun, kalian akan mendapatkan titik yang paling terang dan tampak silau. Titik tersebut merupakan titik fokus lensa. Jika titik tersebut jatuh di atas kertas atau kapas benda yang mudah terbakar kertas atau kapas tersebut dapat terbakar. Sementara titik P1 dan P2 pada gambar bagian-bagian lensa cembung di atas dinamakan titik kelengkungan lensa dan jarak OP1 atau OP2 disebut jari-jari kelengkungan lensa atau R. Seperti halnya pada cermin, pada lensa juga berlaku hubungan R = 2f. Titik O disebut sebagai titik pusat lensa. Sinar-Sinar Istimewa Lensa Cembung Untuk melukis pembentukan bayangan pada lensa cembung, maka dapat digunakan sinar-sinar istimewa. Lalu tahukah kalian apa saja sinar-sinar istimewa pada lensa cembung ini? Terdapat 4 macam sinar istimewa pada lensa cembung seperti yang ditunjukkan pada gambar berikut ini. Sinar istimewa 1 Sinar datang sejajar sumbu utama akan dibiaskan melalui titik fokus F1 di belakang lensa. Sinar istimewa 2 Sinar datang menuju titik fokus di depan lensa F2 akan dibiaskan sejajar sumbu utama. Sinar istimewa 3 Sinar yang datang melewati pusat optik lensa O akan tidak dibiaskan melainkan diteruskan. Sinar istimewa 4 Sinar datang dengan arah sembarang dibiaskan melalui titik fokus tambahan FT di belakang lensa. FT adalah titik perpotongan garis sejajar sinar datang yang melewati pusat optik lensa dengan garis tegak lurus yang ditarik dari titik fokus F1. Pembentukan dan Sifat Bayangan pada Lensa Cembung Nah, dengan menggunakan dua dari empat sinar istimewa di atas, kita dapat melukiskan pembentukan bayangan pada lensa cembung. Dalam melukiskan pembentukan bayangan pada lensa cembung, kita dapat menggambarkan lensa dengan simbol berikut. Untuk mempermudah pembentukan bayangan, ruang di depan dan di belakang lensa dibagi menjadi beberapa ruangan seperti yang ditunjukkan pada gambar berikut ini. Keterangan I, II, III, dan IV adalah nomor ruang benda sedangkan I, II, III dan IV adalah nomor ruang bayangan. Setiap lensa memiliki dua buah titik fokus di sebelah kiri dan kanannya. Jarak kedua fokus tersebut sama. Adapun langkah-langkah dalam menggambarkan proses pembentukan bayangan pada lensa cembung adalah sebagai berikut. a Posisikan benda di depan lensa cembung, misalkan di ruang III, yaitu ruang di antara titik P2 sampai tak hingga ~ b Lukis dua buah sinar istimewa pada lensa cembung. c Sinar selalu datang dari permukaan lensa dan dibiaskan ke belakang lensa. d Perpotongan antara dua sinar bias merupakan letak bayangan. Jika perpotongan didapat dari perpanjangan sinar bias, bayangan bersifat maya dan dilukiskan dengan garis putus-putus. e Dari gambar pembentukan bayangan di atas, bayangan terbentuk dari perpotongan langsung sinar bias sehingga bayangan tersebut bersifat nyata. Karena posisi terbalik dan ukuran lebih kecil, maka bayangan juga bersifat terbalik dan diperkecil. Jadi kesimpulannya adalah ketika benda berada di ruang III lensa cembung, maka sifat bayangan yang dihasilkan adalah nyata, terbalik dan diperkecil. Letak dan sifat bayangan yang dibentuk oleh lensa cembung bergantung pada letak benda. Sebuah objek yang diletakkan di depan sebuah lensa cembung akan memiliki bayangan dengan sifat tertentu. Misalnya, apabila benda berada di ruang II, maka bayangan terletak di ruang III dan bersifat nyata, terbalik dan diperbesar. Sedangkan apabila benda berada di ruang III, maka bayangan terletak di ruang II dan bersifat nyata, terbalik dan diperbesar. Sifat-sifat bayangan ketika benda terletak di ruang I, II, III, titik fokus, dan di titik pusat kelengkungan lensa beserta gambar dan contoh soal dapat kalian temukan dalam artikel tentang 5 Macam Sifat Bayangan Pada Cermin Cekung dan Cara Menentukannya. Rumus pada Lensa Cembung Sama halnya dengan cermin cekung, pada lensa cembung, jumlah nomor ruang benda dengan nomor ruang bayangan sama dengan lima. Secara matematis, rumus nomor ruang benda dan bayangan pada lensa cembung adalah sebagai berikut. Nomor ruang benda + nomor ruang bayangan = V Pada lensa cembung, hubungan antara jarak benda s dan jarak bayangan sâ akan menghasilkan jarak fokus f. Hubungan tersebut secara matematis dapat ditulis sebagai berikut. 1 = 1 + 1 f s s' 2 = 1 + 1 R s s' Keterangan s = jarak benda sâ = jarak bayangan f = jarak fokus R = jari-jari lensa Sementara perbesaran bayangan M dapat dicari melalui perbandingan antara tinggi bayangan dengan tinggi benda atau jarak bayangan dengan jarak benda yang dirumuskan sebagai berikut. Keterangan M = perbesaran bayangan h' = tinggi bayangan h = tinggi benda sâ = jarak bayangan s = jarak benda Pada lensa cembung, makin kecil jarak titik fokusnya, maka makin kuat lensa tersebut memancarkan sinar. Hal ini berarti bahwa kekuatan lensa berbanding terbalik dengan jarak titik fokusnya. Secara matematis, kekuatan lensa dirumuskan sebagai berikut. Keterangan P = kekuatan lensa dioptri = D f = jarak fokus m Catatan kekuatan lensa dinyatakan dalam dioptri bila jarak fokus dinyatakan dalam satuan meter. Oleh karena itu, sebelum menentukan kekuatan lensa, terlebih dahulu kalian harus mengonversi satuan jarak fokus ke meter m. Contoh Soal dan Pembahasan Sebuah benda dengan tinggi 3 cm berada pada jarak 10 cm dari lensa cembung yang mempunyai jarak fokus 6 cm. a. Gambarkan pembentukan bayangan yang terjadi. b. Bagaimanakah sifat bayangannya? c. Tentukan tinggi benda. Penyelesaian Diketahui h = 3 cm s = 10 cm f = 6 cm Ditanyakan a. Lukisan bayangan b. Sifat bayangan c. hâ Jawab a. Lukisan pembentukan bayangan Jarak fokus lensa adalah 6 cm sehingga jari-jari kelengkungan lensa adalah 2 kali jarak fokus, yaitu R = 2 Ă f = 2 Ă 6 = 12 cm Dengan demikian, jarak benda lebih besar dari jarak fokus dan lebih kecil dari jari-jari lensa, dapat kita tuliskan sebagai berikut. R > s > f Jadi, benda terletak di ruang II di antara F2 dan P2. Lukisan pembentukan bayangan dari benda tersebut ditunjukkan pada gambar berikut ini. b. Sifat bayangan Berdasarkan gambar pembentukan bayangan di atas, maka sifat bayangan yang terbentuk adalah nyata, terbalik, dan diperbesar. c. Tinggi bayangan hâ Untuk menentukan tinggi bayangan, kita terlebih dahulu mencari jarak bayangan sâ dengan menggunakan rumus berikut. 1/f = 1/s + 1/sâ 1/6 = 1/10 + 1/sâ 1/sâ = 1/6 â 1/10 1/sâ = 5/30 â 3/30 1/sâ = 2/30 s' = 30/2 sâ = 15 cm Kemudian, dengan menggunakan rumus perbesaran bayangan, maka tinggi bayangan adalah sebagai berikut. h'/h = sâ/s hâ = sâ/s Ă h hâ = 15/10 Ă 3 hâ = 45/10 hâ = 4,5 cm Jadi, tinggi bayangan benda adalah 4,5 cm.
Seratoptik adalah saluran transmisi atau sejenis kabel yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah laser atau LED. Kabel ini berdiameter kurang lebih 120 mikrometer. Cahaya yang ada di dalam serat optik tidakFisikaOptik Kelas 8 SMPCahayaSifat-Sifat CahayaSifat-Sifat CahayaCahayaOptikFisikaRekomendasi video solusi lainnya0051Berkas sinar-sinar yang datang dari satu titik disebut be...Berkas sinar-sinar yang datang dari satu titik disebut be...0049Sebuah prisma memiliki sudut pembias 10 terbuat dari kaca...Sebuah prisma memiliki sudut pembias 10 terbuat dari kaca...0408Sebuah prisma optik mempunyai indeks bias 1,8. Sinar data...Sebuah prisma optik mempunyai indeks bias 1,8. Sinar data...
PembahasanPembiasan terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah B.
5R46ilN.